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General Information

I A partial differential equation, or PDE, is a differential
equation involving partial derivatives.

I PDEs have many applications:
I Harvesting
I Starburst
I Heat
I Waves

I Specifically we studied ∆u + su + u3 = 0 on the unit disk
centered at the origin in R2 with u = 0 on the boundaries.
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Standard Form

I xk+1 = xk −
f (xk)

f ′(xk)
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Newton’s Method in Higher Dimensions

I f : Rm → Rm an arbitrary function
I ak+1 = ak − (Jf (ak)))−1f (ak)

I Jf is a Jacobian of the function f , or a vector of first
derivatives
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Theorem

I Let J : X → R (Recall that X is the function space that we
are working in)

I ∇J(u) = 0⇐⇒u is a solution to the pde

I J(u) =
∫ |∇J(u)|2

2
− F (u)dx̂

I F (u) =
su2

2
+

u4

4
=

∫ u

0
f (s)ds
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Proof in One Direction

I Suppose u(x) is a solution to u′′ + u3 = 0. Then∫
(u′′ + u3)v dx = 0 for all v .

I J(u) =
∫ |∇J(u)|2

2
− u4

4
dx̂

I J ′(u)(v) =
∫
u′v ′− u3v = −

∫
(u′′+ u3)v = − < u′′+ u3, v >

I By definition, ∇J(u) = −(u′′ + u3) = 0.
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Programming

I Language: MATLAB
I Goals:

I Find roots of J(u) =
∫ |∇J(u)|2

2
− F (u)dx̂ using Newton’s

Method
I Display and interpret results
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Gradient Newton Galerkin Algorithm

I Mentor and colleagues have successfully used modified
Newton’s Method to find solutions for PDE

I Our particular PDE of interest was studied by a student
working on his master’s thesis

I ak+1 = ak − (
∂gi
∂aj

)−1g(ak)

I
∂gi
∂aj

is the Hessian, a matrix filled with second derivatives

I g is the gradient that we are trying to find roots of
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Filling in the Gradient and the Hessian

I gi = J ′(u)(Ψi ) = aiλi −
∫
f (u)Ψi

I hij = J ′′(u)(Ψi ,Ψj) = λiδij −
∫
f ′(u)ΨiΨj

I Integrals were computed numerically with Riemann sums

I Solve:
∂gi
∂aj
· χ = g to avoid calculating the inverse of the

Hessian

I Tolerances and iteration limits imposed to find and save off
solutions
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Bifurcation Diagrams
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What These Solutions Look Like

I Solutions can be reassembled using linear combinations

I Sadly, we have not quite figured out the easiest way to do this
yet

I Recall graphics from last presentation
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